
UNIVERS ITE IT •STELLENBOSCH •UNIVERS ITY

j ou kenn i s v ennoo t • you r know ledge pa r tne r

MCTS Parallelisation

Author:
Francois van Niekerk

Supervisors:
Dr. Gert-Jan van Rooyen

Dr. Steve Kroon
Dr. Cornelia Inggs

November 2011



Outline

Introduction
Go and Computer Go
Objectives

Background
Monte-Carlo Tree Search
Parallelisation

Design and Implementation

Results
Pondering
Multi-Core Parallelisation
Cluster Parallelisation

Conclusions



Introduction

I Physical processor constraints have lead to parallel hardware

I Parallelisation of algorithms is increasingly important

I Parallelisation of the Monte-Carlo Tree Search (MCTS) algorithm
for Computer Go was the focus of this project



Go and Computer Go

�
�
�
��
���
�
��
��
�
�
��
��
�
�
��
�����	

I Go is an ancient board game

I Rules are simple

I Emergent complexity

I Computer Go is the field of software
that plays Go

I Dominant algorithm is MCTS

I MCTS can be parallelised



Objectives

I Pondering (thinking during the opponent’s time)

I Multi-core parallelisation

I Cluster parallelisation



Monte-Carlo Tree Search

I Difficult to determine good evaluation function for Go

I Monte-Carlo (MC) methods simulate the outcome (playout)

I MCTS uses a game tree with node values based on MC simulations

I MCTS performs better than alternatives



Monte-Carlo Tree Search
Example

4/9

1/3

0/1 1/1

0/1 3/5

2/3

1/1 0/1

0/1

Selection



Monte-Carlo Tree Search
Example

4/9

1/3

0/1 1/1

0/1 3/5

2/3

1/1 0/1

0/1

Expansion



Monte-Carlo Tree Search
Example

4/9

1/3

0/1 1/1

0/1 3/5

2/3

1/1 0/1

0/1

W

Simulation (playout)



Monte-Carlo Tree Search
Example

5/10

1/3

0/1 1/1

0/1 4/6

2/3

1/1 0/1

1/2

1/1

Backpropagation



Parallelisation

I Increase in number of playouts gives an increase in playing strength
I Thinking time
I Rate of playouts

I Parallelisation: use parallel hardware to increase rate of playouts

I Three major parallelisation methods for MCTS:
I Tree
I Leaf
I Root



Tree Parallelisation

I Shared tree

I Suitable for shared-memory
systems only



Leaf Parallelisation

master:

slaves:

I Master and slave nodes

I Only one tree, on the master

I Slaves are playout workers



Root Parallelisation

I Each compute node
maintains a tree

I Periodic sharing of
information



Design and Implementation

I Extend existing MCTS implementation (Oakfoam)

I Tree parallelisation for multi-core systems
I Boost C++ Threads

I Root parallelisation for cluster systems
I MPI standard, Open MPI



Design and Implementation
System Diagram

Engine
Core

GTP
Standard

I/O
Pondering

Cluster
Other
Nodes

Multi-Core

MCTS
Thread 1

MCTS
Thread 2

MCTS
Thread 0

Prior Connection



Pondering Results

Time/Move Games Winrate [%]
2s 100 57 ± 9.70

10s 100 68 ± 9.14

Performance with Pondering on 9x9

Time/Move Games Winrate [%]
2s 100 57 ± 9.70

10s 100 56 ± 9.73

Performance with Pondering on 19x19



Multi-Core Parallelisation Results

1 2 4 8

1

2

4

8

Cores

S
p
ee
d
u
p

Ideal

No additions

Virtual Loss

Lock-free

Both additions

Speedup on 9x9

1 2 4 8
1

2

4

8

Cores

S
p
ee
d
u
p

Ideal

No additions

Virtual Loss

Lock-free

Both additions

Speedup on 19x19



Cluster Parallelisation Results

1 2 4 8 16
40

60

80

100

Cores/Periods

W
in
ra
te

vs
.
1
-C

or
e
[%

]

Baseline 10s/move

10s/move p = 0.1

10s/move p = 0.2

10s/move p = 0.05

2s/move p = 0.1

2s/move p = 0.2

2s/move p = 0.05

Strength Comparison on 9x9

1 2 4 8 16 32 64
40

60

80

100

Cores/Periods

W
in
ra
te

vs
.
1
-C

or
e
[%

]

Baseline 10s/move

10s/move p = 0.1

2s/move p = 0.1

Strength Comparison on 19x19



Conclusions

I Pondering worked as expected on 9x9 and 19x19

I Multi-core parallelisation scaled up to eight cores on 9x9 and 19x19

I Cluster parallelisation failed to scale well on 9x9, but scaled on
19x19 up to eight cores, where it achieved a strength increase of
four ideal cores



Thanks

Thank you to everyone that made this project possible and thank you for
listening to this talk.

Oakfoam source code:
http://bitbucket.org/francoisvn/oakfoam

Stellenbosch Go Club meetings are Wednesdays from about 19:00 in the
Neelsie near Jeff’s Place. Beginners are welcome.

This Wednesday there will be an extended talk from 18:00 to 19:00 on
Computer Go. Petr Baudǐs, author of Pachi, will be speaking.

Any questions?

Prepared with LATEX and BEAMER

http://bitbucket.org/francoisvn/oakfoam

	Outline
	Introduction
	Go and Computer Go
	Objectives

	Background
	Monte-Carlo Tree Search
	Parallelisation

	Design and Implementation
	Results
	Pondering
	Multi-Core Parallelisation
	Cluster Parallelisation

	Conclusions
	Thanks

